Sufficient conditions for the stability with respect to part of the functional differential equation variables are given. These conditions utilize Lyapunov functions to determine the uniform stability and uniform asymptotic stability of functional differential equations. These conditions for the partial stability develop the Razumikhin theorems on uniform stability and uniform asymptotic stability of functional differential equations. An example is presented which demonstrates these results and gives insight into the new stability conditions.
Sufficient conditions for the stability with respect to part of the functional differential equation variables are given. These conditions utilize Lyapunov functions to determine the uniform stability and uniform asymptotic stability of functional differential equations. These conditions for the partial stability develop the Razumikhin theorems on uniform stability and uniform asymptotic stability of functional differential equations. An example is presented which demonstrates these results and gives insight into the new stability conditions.