位置:成果数据库 > 期刊 > 期刊详情页
基于中医方剂数据库的Top-Rank-k频繁模式挖掘算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]黑龙江大学计算机科学技术学院,哈尔滨150080, [2]黑龙江省数据库与并行计算重点实验室黑龙江大学,哈尔滨150080
  • 相关基金:国家自然科学基金面上项目(81273649);黑龙江省自然科学基金面上项目(F201434);黑龙江大学研究生创新科研项目重点项目(YJSCX2016-018HLJU).
中文摘要:

计算机应用为降低中医(TCM)方剂频繁模式挖掘过程中对经验参数的依赖,提高挖掘结果的准确性,针对中医方剂的数据特点,提出一种基于带权无向图的Top-Rank-k频繁模式挖掘算法。该算法可以直接挖掘出频繁k-itemset(kt〉3)而无需产生1-itemset和2-itemset,并随之快速回溯到核心药物组合的频繁项集所对应的方剂信息;此外,采用一种动态位向量(DBV)的压缩机制对无向图中边的权重进行压缩存储,以有效地提高算法的空间存储效率。分别对中医方剂数据集、真实数据集(Chess、Pumsb和Retail)和合成数据集(T1014D100K和Test2K50KDI)进行测试和比较.结果表明该算法与iNTK和BTK相比具有更高的时间和空间效率,而且也可以应用于其他类型的数据集。

英文摘要:

The dependency of the empirical parameters in frequent patterns mining of Traditional Chinese Medicine (TCM) prescriptions should be reduced to improve the accuracy of mining results. Aiming at the characteristics of TCM prescription data, an efficient Top-Rank-k frequent patterns mining algorithm based on Weighted Undirected Graph (WUG) was proposed. The new algorithm can directly mining frequent k-itemset (k≥3) without mining 1-times and 2-times, and then quikly backtrack to the corresponding prescription of the frequent itemsets of core drugs combination. Besides, the compression mechanism of Dynamic Bit Vector (DBV) was used to store the edge weights in undirected graph to improve the spatial storage efficiency of the algorithm. Experiments were conducted on TCM prescription datasets, real datasets ( Chess, Pumsb and Retail) and synthetic datasets (T1014D100K and Test2K50KD1). The experimental results show that compared with iNTK ( improved Node-list Top-Rank-K) and BTK ( B-list Top-Rank-K), the proposed algorithm has better performance in terms of time and space, and it can be applied to other types of data sets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679