位置:成果数据库 > 期刊 > 期刊详情页
基于形态学重建和梯度分层修正的分水岭脑肿瘤分割
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]兰州交通大学电子与信息工程学院,兰州730070
  • 相关基金:国家自然科学基金资助项目(61261029);金川公司预研基金项目(JCYY201309)
中文摘要:

针对脑部核磁共振成像(magnetic resonance imaging,MRI)图像中因噪声、灰度不均匀及边界模糊不连续等造成肿瘤难以准确分割的问题,提出一种基于形态学重建和梯度分层多尺度修正的分水岭分割方法。首先对原始图像进行形态学混合开闭重建以平滑去噪,同时保留目标轮廓信息;然后根据梯度图像的三维地貌体积对其进行分层多尺度修正,自适应地确定修正所需的结构元素尺寸,对低梯度层级采用较大尺寸结构元素进行闭运算修正,消除产生过分割的非规则局部极小值,而对较高梯度层级则采用较小尺寸的结构元素,保持区域轮廓的位置不变;最后在修正基础上,运用标准分水岭变换实现图像分割。实验结果表明,该方法与标准分割的相似度指数和Jaccard指数均较高,且过分割率和欠分割率均较低,具有较好的分割效果。

英文摘要:

The accurate segmentation of tumor in brain MRI images is usually difficult due to noise, gray inhomogeneity, fuzzy and discontinuous boundaries. For the purpose to get precise segmentation with less contour position bias, this paper presented a novel watershed algorithm based on morphological reconstruction and gradient layered modification. Firstly, it employed marphological hybrid opening and closing by reconstruction operators to smooth and denoise the original image, while retaining the target contour information. Then, it stratified the gradient image by the volume of three-dimension landform, further modified the lower gradient layers with large-sized structuring elements, whereas the smaller-sized to the higher layers. Thus it removed most local minimums caused by irregular details and noises, while region contour positions corresponded to the target area. Finally, it employed morphological watershed algorithm to implement segmentation on the basis of multi-scale modified image. The experimental results show that the suggested method can achieve more accurate segmentation result, owing to its lower over-segmentation and under-segmentation, as well as the higher similarity index compared with the standard segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049