采用溶剂热法制备了富羧基碳,随后通过化学共沉淀法合成了磁性富羧基碳复合材料。利用透射电子显微镜(TEM)、红外光谱分析(FTIR)、X射线衍射(XRD)、振动样品磁强计(VSM)、热重差热分析(TGA)、zeta电位分析及比表面积(BET)等手段对磁性富羧基碳的形貌、组成、结构、磁性以及表面电荷特性等进行了表征,并考察了富羧基碳和磁性富羧基碳对Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)的吸附性能。结果表明:富羧基碳经磁性改性后表面负载了铁氧化物纳米颗粒,比表面积由29.2m^2/g提高到45.4m^2/g,热稳定性提高,由磁滞回线可知,磁性富羧基碳的饱和磁化强度为30.68A·m^2/kg。Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)在磁性富羧基碳上的平衡吸附容量分别为477.50、23.50、260.20、54.86mg/g,低于富羧基碳,吸附等温线符合Langmuir等温模型。从磁性富羧基碳对Pb(Ⅱ)、Ni(Ⅱ)、Hg(Ⅱ)和U(Ⅵ)均具有较高的吸附容量和不同吸附剂对U(Ⅵ)吸附容量的比较可以看出,该吸附剂是重金属污水和放射性废液处理领域中极具发展前景的吸附材料。
Carboxylate-rich carbonaceous composite materials were prepared using hydro- thermal method, then magnetically modified carboxylate-rich carbonaceous composite material was prepared by chemical co-precipitation process. The morphology, contents, structures, paramagnetic properties and surface charge properties of magnetic carboxylate-rich carbon have been characterized by transmission electron microscopy (TEM), Fourier transformed infrared spectrum (FTIR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), zeta potential and specific surface area (BET), and sorption of (Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ) by carboxylate-rich carbon and magneticcarboxylate-rich carbon was also studied. Results indicate that Fe304 nanoparticles are absorbed to the surfaces of magnetic carboxylate-rich carbon. Its surface area increases from 29.2 m2/g to 45.4 m^2/g. The introduced Fe304 improves thermal stability. The saturation magnetization of magnetic carboxylate-rich carbon is 30.68 A·m^2/kg. The equilibrium sorption capacities of Pb (Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ) on magnetic carboxylate-rich carbon are 477.50, 23.50, 260.20 and 54.86 mg/g, respectively, which are lower than carboxylate-rich carbon. The Langmuir isotherm is the best-fit sorption isotherm model. From the high sorption capacities of (Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and U(Ⅵ) on magnetic carboxylate-rich carbon and comparison of U( Ⅵ ) sorption capacities on different sorbents, magnetic carboxylate-rich carbon is a promising sorption material for water treatment of heavy metal ions and radionuclides.