位置:成果数据库 > 期刊 > 期刊详情页
基于集成学习的中文文本欺骗检测研究
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西大学计算机与信息技术学院,山西太原030006, [2]山西大学计算智能与中文信息处理教育部重点实验室,山西太原030006, [3]山西大学外国语学院,山西太原030006
  • 相关基金:国家自然科学基金(61373082); 山西省科技基础条件平台建设项目(2014091004-0103); 山西省回国留学人员科研资助项目(2013-015); 国家863计划项目(2015AA015407); 中国民航大学信息安全测评中心开放课题基金项目(CACCISECCA-201402)
中文摘要:

针对汉语篇章分析的三个任务:篇章单元切割、篇章结构生成和篇章关系识别,该文提出引入框架语义进行分析研究。首先基于框架构建了汉语篇章连贯性描述体系以及相应语料库;然后抽取句首、依存句法、短语结构、目标词、框架等特征,分别训练基于最大熵的篇章单元间有无关系分类器和篇章关系分类器;最后采用贪婪算法自下向上生成篇章结构树。实验证明,框架语义可以有效切割篇章单元,并且框架特征可以有效提升篇章结构以及篇章关系的识别效果。

英文摘要:

Frame semantics is introduced to the research of Chinese discourse analysis which includes three subtasks : discourse segmentation, discourse structure modeling and discourse relation recognition. First, the Chinese discourse coherence framework and a corresponding corpus is built based on frame semantics. Then two kinds of maxi- mum entropy classifiers are applied to recognize the relation between discourse units and the class of discourse relation based on lexical features, dependency parser features, syntactic parser features, target features and frame sematic features. Finally, we use probability of the relation existence between discourse units to generate the discourse structure by greedy bottom-up method. Experimental results show that frame sematic can segment discourse units effectively and frame sematic feature can improve the performance of discourse structure construction and discourse relation recognition.

同期刊论文项目
期刊论文 8
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349