提出了考虑非等温混合的新的水网络模型,并结合线性规划(LP)转运模型同时优化水网络的水耗及公用工程目标。新的水网络模型引入非等温混合以改善用水网络的能耗特性及减少模型中参与集成换热网络的流股数,从而降低设计换热网络的复杂程度。在确定水网络的水耗及公用工程目标后,采用夹点法设计详细的换热网络结构。两个算例结果表明,新的水网络模型不仅能确定用水网络的最优水耗及公用工程目标,而且还能得到一个更加简单的换热网络。这对节省设备投资及减少操作费用具有重要意义。
The design of heat-integrated water allocation network has become a recent research direction. However, most current models do not treat non-isothermal mixing directly in the water network in order to avoid nonlinearity. Therefore, the number of streams increases dramatically when designing heat exchanger network. In order to manage this problem, a new kind of water network model that considers non-isothermal mixing is developed and combined with the LP transshipment model to perform simultaneous optimization of water and heat integration. Non-isothermal mixing is introduced to improve the water network's energy performance and reduce the complexity of designing heat exchanger network by decreasing stream number. A detailed heat exchanger network to satisfy the targeted water and utility consumption can be designed adequately by the principles of pinch method. The results show that the new model not only targets the optimal water and utility consumption but also obtains a much simpler heat exchanger network. This is from a practical application point of view highly valuable.