位置:成果数据库 > 期刊 > 期刊详情页
基于多光谱图像颜色特征的茶叶分类研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]厦门大学物理系,福建厦门361005, [2]浙江大学生物系统工程与食品科学学院,浙江杭州310029
  • 相关基金:国家“十一五”科技支撑项目(2006BAD10A0403),国家自然科学基金项目(30671213,30600371)和高等学校博士学科点专项科研基金课题项目(20040335034)资助
中文摘要:

提出了一种利用多光谱图像颜色特征进行茶叶分类的新方法,对两种颜色几乎一样用肉眼几乎不能分辨的茶叶进行了分类。图像由MS3100-3CCD光谱成像仪和普通数码相机同时获得,光谱成像仪提供3个波段的图像,由近红外(NIR)、红色(R)和绿色(G)组成,因此它比普通数码照相机包含更丰富的信息,特别NIR波段的图像对有机物的颜色比可见光敏感。提取3CCD光谱成像仪和普通数码照相机各个波段图像颜色的特征即像素偏方差值和平均值进行统计分析,用多光谱图像的NIR图像所提供颜色信息能够辨别这两种颜色几乎一样的茶叶,而普通数码相机无法提供信息进行识别。然后应用人工神经网络技术,对NIR图像像素偏方差值和平均值这两个参数进行建模,建模样本40个,每个样本为20个,预测样本20个,每个样本为10个。结果表明,在阈值为0.3,对两种茶叶进行分类得到了100%识别率,此研究为茶叶的分类提供一种快速和无损的新方法。

英文摘要:

Tea is one of the most popular beverages worldwide.Its categories have a great relationship to its beneficial medicinal properties.The present work attempted to study the feasibility to use multispectral imaging technique as a rapid and non-destructive method to discriminate tea varieties.Two categories of tea discriminated hardly by naked eye were sorted.The images were 1 036 pixels vertically by 1 384 pixels horizontally with 24-bit depth,and were captured using a red(R) waveband,near infrared(NIR) waveband and green(G) waveband multispectral digital imager,MS3100(Duncan Technologies,Inc.,CA,USA).The three wavebands of image(Red,Green,NIR) can be composed into one image which contains more information than images recorded by ordinary digital cameras,especially,the NIR image is more sensitive to the color of organic matter than visible spectrum.The three images of one sample can be obtained simultaneously.The color features of tea were calculated using the standard notations: mean and mean square deviation.Then,the two color features of 3CCD and ordinary digital cameras were extracted and calculated by Matlab 7.3 software respectively,and were contrasted.A total of 60 samples were adopted,and the features of mean and mean square deviation of NIR waveband image were applied as inputs to a back propagation neural network(BP-ANN) with one hidden layer.The forty samples(twenty for each category) were selected randomly to build BP-ANN model,and this model was used to predict the varieties of 20 unknown samples(ten for each category).The two categories of tea can be discriminated by the information of color of images of 3CCD,but can not by the ordinary digital cameras.The result indicted that the discrimination rate of classification set of BP-ANN model was up to 100% within 0.3 of threshold.It concluded that multi-spectral imaging technique has a high potential to identify categories of green tea fast and non-destructively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642