位置:成果数据库 > 期刊 > 期刊详情页
基于特征融合的多约束非负矩阵分解算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:辽宁工业大学电子与信息工程学院,辽宁锦州121001
  • 相关基金:国家自然科学基金资助项目(61572214);辽宁省高等学校优秀人才支持计划项目(LR2015030).
中文摘要:

针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具有不同稀疏度的图像特征进行了融合,从而增强了算法的聚类性能和有效性。在Yale-32和COIL20数据集上进行的对比实验进一步验证了该算法具有更好的聚类精度和稀疏性。

英文摘要:

Focusing on the issues that the sparseness of data is reduced after factorization and the single image feature cannot describe the image content well, a multi-constraint nonnegative matrix factorization based on feature fusion was proposed. The information provided by few known labeled samples and sparseness constraint were considered, and the graph regularization was processed, then the decomposed image features with different sparseness were fused, which improved the clustering performance and effectiveness. Extensive experiments were conducted on both Yale-32 and COIL20 datasets, and the comparisons with four state-of-the-art algorithms demonstrate that the proposed method has superiority in both clustering accuracy and sparseness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679