设p是素数,fp(x)=1+p2x(x+1)/2.该文运用二元二次Diophantine方程的性质讨论形如fp(x)的平方数,其中x是正整数.证明了:对于任何素数p,都存在无穷多个正整数x可使fp(x)是平方数.
Let p be a prime,and let fp(x)=1+p2x(x+1)/2.In this paper,using the properties of binary quadratic Diophantine equations,we discuss the square numbers with the form fp(x),where x is positive integers.Results show that there exist infinitely many which make fp(x) are square numbers for every prime p.