该文提出一种新的移位序列集的构造方法,并基于这些新的移位序列,通过交织周期为Ⅳ的完备高斯整数序列,得到一类具有灵活相关区长度的周期为2N的高斯整数零相关区序列集。这类新的序列集的参数能接近甚至达到Tang-Fan—Matsuji界,所以序列集的性能是最佳的或者几乎最佳的。高斯整数零相关区序列集可为高速准同步扩频系统提供更多的地址选择空间。
A new method of construction of shift sequence sets is proposed, and based on these shift sequences, a new class of Gaussian integer sequence sets with period 2N which can choose Zero Correlation Zone (ZCZ) length flexibly is obtained by interleaving one perfect Gaussian integer sequence with period N. The new sequence sets whose parameters can reach or approach the Tang-Fan-Matsuji bound are optimal or almost optimal. Gaussian integer sequence sets with zero correlation zone can provide more address selection for high-speed quasi-synchronous spread spectrum system.