Two improved algorithms and implementation for a singularly perturbed problem on moving meshes
- 时间:0
- 分类:O175.2[理学—数学;理学—基础数学] O175.25[理学—数学;理学—基础数学]
- 作者机构:[1]School of Mathematical Sciences,South China Normal University, School of Mathematics and Statistics,Chongqing Three Gorges University, College of Civil Engineering and Mechanics,Xiangtan University
- 相关基金:This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University, Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), National Science Foundation of China under Grant No. 10971074, and China Postdoctoral Science Foundation under Grant No. 2011M500968.
- 相关项目:最优控制问题混合有限元超收敛性研究
关键词:
混合有限元方法, 非线性椭圆方程, 最优控制问题, 估计, 有限元逼近, 有限元空间, 控制约束, 函数近似, L∞--error estimates, mixed finite element methods, nonlinear elliptic equations, optimalcontrol problems, pointwise control constraints.
中文摘要:
这份报纸为二维的非线性的椭圆形的方程用混合有限元素方法与 pointwise 控制限制管理的一般最佳的控制问题调查 L 估计。状态并且有肋骨被最低顺序 Raviart-Thomas 接近混合有限元素空格和控制被 piecewise 常数函数接近。作者为非线性的最佳的控制问题的混合有限元素近似导出 L 估计。最后,数字例子被给。
英文摘要:
This paper investigates L∞--estimates for the general optimal control problems governed by two-dimensional nonlinear elliptic equations with pointwise control constraints using mixed finite element methods. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. The authors derive L∞--estimates for the mixed finite element approximation of nonlinear optimal control problems. Finally, the numerical examples are given.