位置:成果数据库 > 期刊 > 期刊详情页
基于分类器融合的自动化协商决策模型
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]浙江科技学院信息与电子工程学院,杭州310023, [2]浙江大学计算机科学与技术学院,杭州310027, [3]浙江警察学院刑事科学技术系,杭州310053
  • 相关基金:国家自然科学基金(61175058),浙江省自然科学基金(Y1100036,LY12F02018),浙江省教育厅科研计划基金(Y201016929,Y201222997),浙江省自然科学基金(Z12F020019)资助项目
中文摘要:

为了解决电子商务环境中由于信息的保密性使协商参与者无法获得对手协商偏好从而影响协商性能的问题,提出一种基于分类器融合的自动化协商决策模型.该模型融合支持向量机和贝叶斯分类器,通过结合2种分类器的优点,提高对协商偏好的分类学习效果.在准确估计对手协商偏好的基础上,采用粒子群优化算法搜寻最优协商反建议.实验数据分析表明,新方法的效果优于单一分类器,并且在有噪声的小规模训练样本集下,仍然保持较高的协商总效用.

英文摘要:

Due to the confidentiality of information in e-commerce environment, negotiation participants can not get opponent ;s negotiation preferences, thereby affecting the negotiation performance. To solve this, an automated negotiation decision model based on classifier fusion was proposed. The model incorporates support vector machine and Bayesian classifier by combining the advantages of both, improving the effect of classification learning of negotiation preferences. Based on accurate estimation of opponent's negotiation preference, a particle swarm optimization algorithm was used to search the optimal counter proposal. The experimental data show that the new method is better than the single classifier, and can maintain a high total negotiation utility in the noisy small scale training set.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903