位置:成果数据库 > 期刊 > 期刊详情页
基于分化距离的离群点检测算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学自动化学院,西安710072
  • 相关基金:国家自然科学基金资助项目(10702065); 陕西省自然科学基金资助项目(2005F45)
中文摘要:

为了满足大规模数据集快速离群点检测的需要,提出了一种基于分化距离的离群点检测算法,该算法综合考虑了数据对象周围的密度及数据对象间的距离等因素对离群点的影响,通过比较每一对象与其他对象的分化距离来计算其周围的友邻点密度,挖掘出数据集中隐含的离群点。实验表明,该算法能有效地识别离群点,同时能反映出数据对象在数据集中的孤立程度。算法的复杂度较低,适用于大规模数据集快速离群点检测。

英文摘要:

In order to meet the need of rapid outlier detection for large-scale data sets,this paper proposerd a differentiation distance-based outlier detection algorithm( DODA) ,which took into account the factors that affected outlier,such as the density of the surrounding data objects and the distance between the objects. By comparing differentiation distance of the each object and other objects to calculate the density of its surrounding neighboring points to discover the hidden outliers data set. Experimental results show that: the algorithm can effectively identify outliers,at the same time,data objects reflect the isolation level in the data set. The algorithm’s complexity is low,it is suitable for quickly outlier detection of large data sets.

同期刊论文项目
期刊论文 30 会议论文 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049