位置:成果数据库 > 期刊 > 期刊详情页
过程工业大数据建模研究展望
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]东北大学流程工业综合自动化国家重点实验室,中国沈阳110819, [2]美国南加州大学化工系,洛杉矶90089, [3]香港中文大学(深圳),中国深圳518172
  • 相关基金:国家自然科学基金(61304107;61490704;61573022;61290323;61203102); 中国博士后科学基金(2013M541242); 博士后国际交流计划派出项目(20130020); 中央高校基本科研业务费(N130408002;N130108001)资助
中文摘要:

人们对大数据的认识已从"3Vs"(Volume—大容量;Variety—多样性;Velocity—处理实时性)、"4Vs"("3Vs"与Value—价值)、到现今的"5Vs"("4Vs"与Veracity—真实性).在此背景下,首先分析过程工业大数据的"5Vs"特性;接下来,综述现有数据建模方法,并结合过程工业大数据特有性质(包括:多层面不规则采样性、多时空时间序列性、不真实数据混杂性)论述现有数据建模方法应用于工业大数据建模时的局限;最后,探讨过程工业大数据建模有待研究的问题,包括:1)多层面不规则采样数据的潜结构建模;2)用于事件发现、决策和因果分析的多时空时间序列数据建模;3)含有不真实数据的鲁棒建模;4)支持实时建模的大容量数据计算架构与方法.

英文摘要:

The understanding of big data goes through three stages, i.e., "3Vs"(Volume, variety and velocity), "4Vs"("3Vs" and value), and "5Vs"("4Vs" and veracity). In the era of big data of process industries, the "5Vs" characteristics of industrial big data are analyzed. After that, the existing methods on data modeling are reviewed while the corresponding limitations are analyzed under industrial big data circumstances with specific characteristics, i.e., multi-layer irregularly sampling, multiple temporal and spatial time series, and non-veracity with outlier. Finally, the perspectives on industrial big data modeling are discussed, including: i) latent structure modeling of multi-layer irregularly sampled big data; ii)multiple temporal and spatial time-series data modeling for event discovery, decision-making, and causality analysis; iii)robust modeling of data with non-veracity samples; and iv) data-friendly system architecture and method towards big data real-time modeling.

同期刊论文项目
期刊论文 32 会议论文 5 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550