位置:成果数据库 > 期刊 > 期刊详情页
基于最小二乘支持向量机的复杂装备故障预测模型研究
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP206[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]军械技术研究所,河北石家庄050003, [2]军械工程学院,河北石家庄050003
  • 相关基金:国家自然基金资助项目(60771063)
中文摘要:

针对复杂装备故障信息不足、故障预测困难等问题,应用支持向量机建立了故障预测模型;在对支持向量机回归算法分析的基础上,利用最小二乘支持向量机建立故障预测模型;最小二乘支持向量机通过对相空间重构,有效地降低了模型的复杂度;最后,本文利用某导弹发射装置液压泵的故障数据进行了验证,通过选取合适的参数,该模型能够较好地对故障数据进行预测,预测精度较高;事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对复杂装备故障的趋势进行预测。

英文摘要:

For the problems of not enough fault information for the complicated equipment and hard to predict the fault,we apply Support Vector Machine(SVM) to build the fault prediction model.On the basis of analyzing regression algorithm of SVM,we use Least Square Support Vector Machine(LS-SVM) to build the fault prediction model.LS-SVM can effectively debase the complication of the model.Finally,we take the fault data of hydraulic pump in one missile launcher to validate this model.By selecting appropriate parameters,this model can make better prediction for the fault data,and it has higher prediction precision.It is proved that the fault prediction model which based on LS-SVM can make better prediction for fault trend of complicated equipment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924