位置:成果数据库 > 期刊 > 期刊详情页
The mechanical response of piles with consideration of pile-soil interactions under a periodic wave pressure
  • ISSN号:1001-6058
  • 期刊名称:《水动力学研究与进展:英文版》
  • 时间:0
  • 分类:TU473.1[建筑科学—结构工程;建筑科学—土工工程] TV125[水利工程—水文学及水资源]
  • 作者机构:[1]Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098,China, [2]Department of Civil Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada,, [3]Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China
  • 相关基金:Project supported by the China Scholarship(Grant No.201406715005); Qing Lan Project,the Natural National Science Foundation of China(Grant Nos.11172090,11272113); the Natural Science Foundation of Jiangsu Province(Grant No.BK2012809)
中文摘要:

The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.

英文摘要:

The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水动力学研究与进展:英文版》
  • 中国科技核心期刊
  • 主管单位:中国船舶重工集团公司
  • 主办单位:中国船舶科学研究中心
  • 主编:矣有生
  • 地址:上海高雄路185号
  • 邮编:200011
  • 邮箱:jhdzhou@aliyun.com
  • 电话:021-63150072
  • 国际标准刊号:ISSN:1001-6058
  • 国内统一刊号:ISSN:31-1563/T
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:427