位置:成果数据库 > 期刊 > 期刊详情页
多模式扰动模型动态加权SVM集成研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学理学院,西安710071
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60603098)
中文摘要:

针对集成学习中bootstrap方法不能产生具有较大差异性的成员分类器,提出基于多模式扰动模型动态加权SVM集成方法。该方法在训练样本中使用bootstrap采样产生扰动,在输入特征中使用PCA特征滤波子空间法产生扰动,用自动模型选择法来动态扰动每个成员分类器的参数,用分类精度对成员分类器加杈集成扰动输出。实验结果表明该方法比常用的bootstrap集成方法具有更好的集成效果。

英文摘要:

According to the fact that the bootstrap in ensemble learning can't generate the committee classifiers with big differences, automatical weighted SVM ensemble learning based on multimodal perturbation is proposed(MP-AWE).MP-AWE generates the perturbation on the training data with bootstrap sampling,generates the perturbation on the input attributes with PCA attribute subspace selection, and generates the perturbation on the learning parameter with automatic model selection, and generates the perturbation on the output with accuracy of the committee classifiers.The experimental results show that the performance of MP-AWE is better than that of many other ensemble algorithms.

同期刊论文项目
期刊论文 46 会议论文 14
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887