对复Schrdinger场和实Klein-Gordon场相互作用下一类耦合方程组的初边值问题进行了数值研究,提出了一个高效差分格式,该格式非耦合且为半显格式,因此比隐格式具有更快的计算速度,而且便于并行计算;同时,该格式很好地模拟了初边值问题的守恒性质,保证了格式计算的可靠性,从而便于长时间计算.细致讨论了格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性.
An efficient finite difference scheme is proposed for a class of coupled equation system in interaction of complex Schrdinger field and real Klein-Gordon field.It has three advantages.Firstly, it is uncoupled,thus can be computed by parallel method;secondly,it is semi-explicit,thus needs less CPU time than coupled implicit schemes;thirdly,it keeps the conservation of discrete energy,thus can be used for long time computing.Convergence of difference solution is proved in the energy norm on the basis of prio...