位置:成果数据库 > 期刊 > 期刊详情页
卡尔曼滤波与粒子滤波之间跟踪模式的优化
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]宁波大学信息科学与工程学院,浙江宁波315211, [2]中国科学院电子学研究所,北京100190
  • 相关基金:国家自然科学基金(No.61071120);宁波市科技局自然科学基金(No.2010A610109).
中文摘要:

鉴于卡尔曼滤波(Kalman Filter,KF)和粒子滤波(Particle Filter,PF)都是贝叶斯估计的一种,粒子滤波比卡尔曼滤波应用广泛,而卡尔曼滤波比粒子滤波使用简便,提出了一种算法在卡尔曼滤波和粒子滤波之间切换的跟踪模式。定义出算法性能评价参数,使参数可以在线反映算法的好坏;通过仿真使噪声不满足卡尔曼使用条件,确定切换是否可行,结合实际情况定义切换条件;应用至实际视频中。结果证明,卡尔曼滤波与粒子滤波间跟踪模式的优化是可行的。

英文摘要:

Based on Kalman Filter and Particle Filter are all kinds of Bayesian estimation, the PF uses wider than KF, while the KF is easier than PF, proposing a new tracking mode that the tracking algorithms can be switched between KF and PF. This paper defines the parameter which can evaluate the algorithms' performance online, makes the noise not fit KF by simulation to see whether algorithms' switchover is practicable, if it does, the threshold is defined integrating the real situation; and puts it into the real video. The result shows that it is feasible of optimizing the tracking mode between KF and PF.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887