位置:成果数据库 > 期刊 > 期刊详情页
基于主成分分析和Copula函数的干旱影响评估研究
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:S127[农业科学—农业基础科学]
  • 作者机构:[1]中国农业大学信息与电气工程学院,北京100083, [2]陕西省气象局,西安710014
  • 相关基金:国家自然科学基金项目(41371390)
中文摘要:

干旱是关中平原主要的农业灾害之一,准确地评估干旱的影响,对抗旱减灾及作物稳产具有重要意义。基于关中平原2008--2013年冬小麦主要生育期旬尺度的条件植被温度指数(VTCI)干旱监测结果,将Copula函数用于评估冬小麦主要生育时期干旱对其产量的影响。针对多元变量导致Copula函数参数求解困难的问题,采用主成分分析法(PCA)提取主要生育时期的VTCI的主成分因子,形成新的相互独立的指标,进而结合Copula函数建立PCA—Copula法,确定关中平原主要生育时期的综合VTCI,并构建其与冬小麦单产间的线性回归模型,评估干旱对产量的影响。结果表明,应用PCA—Copula法得到的综合VTCI与单产间的相关性达到极显著水平(P〈0.001),所建回归模型的拟合度与熵值法的结果相比有所提高,决定系数由0.39提高到0.49,且对应模型的估测单产与实测单产间的均方根误差较熵值法的结果降低了30.2kg/hm^2,平均相对误差降低了0.66%,表明PCA—Copula法能较好地应用于评估冬小麦主要生育时期干旱对其产量的影响。

英文摘要:

Drought is one of the most important agricultural disasters in the Guanzhong Plain, China. Assessing the influence of the droughts in the plain accurately can provide reference for drought mitigation and maintaining stable crop yields. Based on remotely sensed vegetation temperature condition index (VTCI) which was calculated at ten-day intervals for monitoring droughts in the years of 2008--2013 in the plain, the Copula function method was used to assess the effect of drought at the main growth stages of winter wheat on the yields. The mutually independent principal factors were extracted from the VTCIs at the main growth stages of winter wheat by using principal component analysis (PCA), overcoming difficulty of parameter estimation for multivariate Copula, and then incorporated into the Copula function to establish a PCA - Copula method. The comprehensive values of VTCIs at the main growth stages were determined by the PCA - Copula method, and then linear regression model between the comprehensive VTCIs and wheat yields was established to assess the effect of drought on the yields. The results showed that the linear correlation coefficient between the wheat yields and comprehensive VTCIs was at the extremely significant level (P 〈 0. 001 ). Compared with the linear regression model based on the entropy value method, the determination coefficient of the model with the PCA - Copula method reached 0. 49 from 0.39, which indicated that the fitting degree of the model was improved, and the root mean square error and average relative error between the estimated and measured yields reduced by 30.2 kg/hm^2 and 0.66% , respectively. These results indicated that the PCA - Copula method was a better approach for accessing the impact of droughts at the main growth stages of winter wheat on the yield.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884