以钢网为支撑体,采用浸渍法制备具有内嵌柔性支撑体结构的聚二甲基硅氧烷(PDMS)复合膜,采用扫描电子显微镜对复合膜的形貌进行分析,探讨了制膜工艺对C_3气体/N_2体系气体渗透性能的影响。研究表明,与PDMS均质膜相比,在保持较高选择性的前提下,内嵌柔性支撑体PDMS复合膜不仅具有较高的气体渗透通量,同时表现出具有良好的柔韧可弯曲性能和机械强度。不同经纬结构的钢网所制备的柔性复合膜的气体渗透性能不同,结构疏松钢网制备的复合膜气体渗透速率较高;PDMS的制备工艺(如单体和交联剂的配比、固化反应时间及浓度)对复合膜的气体分离性能影响较大。在最佳制备工艺条件下,所制备的复合膜对N_2、C_3H_8、C_3H_6气体的渗透速率分别为8、106、178 GPU(1 GPU=10-6 cm3(STP)×cm(-2)×s(-1)×(cm Hg)(-1);C_3H_8/N_2和C_3H_6/N_2的选择性分别为12和21。复合膜对烃类混合气也表现出良好的分离性能,并保持良好的渗透稳定性。
Polydimethylsiloxane (PDMS) composite membranes with flexible stainless steel mesh supportwere fabricated by dip-coating, and the morphology of the supports and composite membranes werecharacterized with scanning electron microscope. Effects of preparation conditions on the separationperformance of C3 hydrocarbon/N2 were investigated. Compared with unsupported PDMS membranes, thePDMS composite membranes with flexible support exhibits similar gas selectivity but significantly increase ofgas permeation rates, excellent flexibility and mechanical properties. The support structure affects their gasseparation performance and the composite membrane with incompact structure shows better gas separationperformance. Preparation conditions such as ratio between monomer and crosslinking agent, curing time andconcentration of PDMS precursor have great effects on the gas separation performance of the compositemembranes. The best gas separation performance can be achieved as PN2 = 8 GPU, PC3Hs = 106 GPU, PC3H6= 178GPU, aC3Hs/N2 = 12 and aC3Hs/N2 = 21 under optimized preparation conditions. The prepared PDMS compositemembranes exhibit good separation performance and long-time permeating stability for hydrocarbon gases.