考虑奇数阶常微分方程的反周期问题,把问题先转化为求算子的不动点问题,再利用拓扑度理论,证明算子不动点的存在性,从而得到所考虑问题解的存在性,最后证明了解的惟一性.
The present paper deals with the anti-periodic problems for (2n + 1 )-order ordinary differential equation. Under certain assumpations, we presented some results about the existence and uniqueness of antiperiodic solutions for (2n + 1 )-order ordinary differential equations using the topological degree theory.