针对进行大角度快速机动的刚柔耦合卫星,提出了有限时间控制方法。首先在考虑卫星本体运动与柔性附件变形耦合效应的情况下,建立一次近似刚柔耦合动力学模型。其次假设柔性附件振动信息可测,考虑外部干扰和转动惯量不确定性,基于非奇异快速终端滑模(NFTSM)原理,设计了有限时间全状态反馈控制器,根据Lyapunov原理证明其有限时间稳定性;进一步考虑柔性附件振动信息不可测的实际情况,设计了非奇异快速终端滑模动态输出反馈控制器,该控制器仅利用角度和角速度信息就可以实现有限时间快速姿态稳定。最后对提出的控制算法进行了数值仿真,并通过与现有文献中控制算法进行对比,验证了本文设计的输出反馈控制算法的有限时间快速稳定特性。
A study on finite-time control is made for the rigid-flexible coupling satellites in a large-angle rapid maneuver. A first-order approximation rigid-flexible coupling dynamic model is set up, considering the serious coupling effect between the deformation of the flexible appendages and the large-scope spatial movement of the central body. Given that all states including the flexible vibration measurements of the satellite system can be measured, a nonsingular fast terminal sliding mode (NFTSM) full state feedback controller is designed in the presence of the model uncertainties and disturbances. The finite-time stability of the system is proved by the Lyapunov theory. Then a modified NFTSM output feedback controller is proposed in the condition that the flexible vibration measurements are not available, and the finitetime output feedback control is based on measurements of the angle and angular velocity only. At last, the numerical simulations of the proposed controllers and comparisons with the controller in present literature together demonstrate the finite-time stability of the control method proposed.