位置:成果数据库 > 期刊 > 期刊详情页
基于二阶振荡微粒群最小二乘支持向量机的物流需求预测
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]石家庄铁道大学经济管理学院,石家庄050043, [2]河北科技师范学院欧美学院,河北秦皇岛066004, [3]石家庄铁道大学四方学院,石家庄051132
  • 相关基金:河北省社会科学基金资助项目(HB12YJ035);国家软科学研究计划资助项目(2010GXQ5D320);教育部人文社会科学研究青年基金资助项目(11YJC790048)
中文摘要:

为了提高物流需求的预测精度,在分析物流需求影响因素基础上,建立了物流需求的二阶振荡微粒群最小二乘支持向量机预测模型。利用最小二乘支持向量机(LSSVM)描述物流需求与其影响因素间的复杂非线性关系,并通过二阶振荡微粒群(TOOPSO)算法优化选择LSSVM参数。实例分析表明,模型具有较高的预测精度,TOOPSO算法搜索LSSVM最优参数时间明显少于传统交叉验证法,是一种有效的物流需求预测方法。

英文摘要:

Based on analyzing the factors of logistics demand,this paper proposed a new model named the two-order oscillating particle swarm least squares support vector machines(TOOPSO-LSSVM) model to improve the forecasting accuracy of logistics demand.The complex nonlinear relationship between logistics demand and its impact factors were explained through LSSVM.And then,it used TOOPSO algorithm to optimize the parameters of LSSVM model.An empirical analysis indicates that the forecasting performance of LSSVM is better than the other three models and the searching time for optimal parameters of LSSVM by TOOPSO is obviously less than cross validation method,which is an effective method for logistics demand forecasting.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049