文章设计了一款椭圆曲线密码芯片。实现了GF(2^233)域上normal基椭圆曲线数字签名和认证。并支持椭圆曲线参数的用户配置。在VLSI的实现上,提出了一种新的可支持GF(2^233)域和GF(p)域并行运算的normal基椭圆曲线VLSI架构。其架构解决了以往GF(p)CA算迟后于GF(2^233)域运算的问题,从而提高了整个芯片的运算吞吐率。基于SMIC 0.18μm最坏的工艺,综合后关键路径最大时延3.8ns,面积18mm^2;考虑布局布线的影响,芯片的典型的情况下,每秒可实现8000次签名或4500次认证。
In this paper, we design an elliptic curve security chip, which implements elliptic curve digital signature and verification for Galois field GF (2^233) and supports curve coefficients recortfignrable. The paper presents a parallel VLSI architecture for GF(2^233) and GF(p) field operations. The architecture solves the problem that GF(p) field operations are always the bottleneck of the whole cryptosystem and hence enhance the throughputs of the chip. The results show that our proposed design has a critical path of 3.8ns and area of 18mm^2 based on SMIC 0.18μm technology, in worst case. Take place-and-route into account, a performance of 8000 signature or 4500 verification per second is achieved in typical case.