本文研究了广义分数次积分算子在齐次加权Morrey-Herz空间上的有界性.利用对函数进行环形分解技术和算子截断的方法,获得了广义分数次积分算子L^β/2(f)从MKp,q1-^α,λ(ω1,ω2^q1)空间到MKp,q2^α,λ(ω1,ω2^q2)空间是有界的,从而将分数次积分算子在齐次加权Morrey-Herz空间上的有界性推广到广义分数次积分算子.
In this article,we study the boundedness of the generalized fractional integral operators on the weighted homogeneous Morrey-Herz spaces.By the methods of studying ring decomposition of functions and truncated operators,we get that the generalized fractional integral operator L^-β/2(f) is bounded from MKp,q1^α,λ(ω1,ω2^q1) space to MKp,q26α,λ(ω1,ω2-(q2) space.Thus,we extend the results of the boundedness of the fractional integral operators on the weighted homogeneous Morrey-Herz spaces to generalized fractional integral operators.