位置:成果数据库 > 期刊 > 期刊详情页
基于深度玻尔兹曼模型的红外与可见光图像融合
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆工商大学机械工程学院,制造装备机构设计与控制重庆市重点实验室,重庆400067
  • 相关基金:国家自然科学基金(批准号:51375517)、重庆高校创新团队项目(批准号:KJTD201313)、重庆工商大学校内青年博士基金(批准号:1352007)和重庆市教委自然科学基金(批准号:KJ1400628)资助的课题.
中文摘要:

为了克服红外与可见光图像融合时噪声干扰及易产生伪影导致目标轮廓不鲜明、对比度低的缺点,提出一种基于深度模型分割的图像融合方法。首先,采用深度玻尔兹曼机学习红外与可见光的目标和背景轮廓先验,构建轮廓的深度分割模型,通过Split Bregman迭代算法获取最优能量分割后的红外与可见光图像轮廓;然后再使用非下采样轮廓波变换对源图像进行分解,并针对所分割的背景轮廓采用结构相似度的规则进行系数组合;最后进行非下采样轮廓波反变换重构出融合图像。数值试验证明,该算法可以有效获取目标和背景轮廓均清晰的融合图像,融合结果不但具有较高的对比度,还能抑制噪声影响,具有有效性。

英文摘要:

In the infrared and visible light image fusion, the noise interference always exists. There is also the disadvantage that image fusion is easy to produce artifacts which cause blurred edge and low contrast. In order to solve these problems, in this study we propose an image fusion method based on deep model segmentation. First of all, deep Bolzmann machine is adopted to learn prior target and background contour and construct a contour deep segmentation model. After the optimal energy segmentation, Split Bregman iteration is used to obtain the infrared and visible image contour. Then non-subsampled contourlet transform is adopted to decompose the source images. The segmented background contour coefficients are fused by the structure similarity rule. Finally, the fused image is reconstructed by the non-subsampled contourlet inverse transform. The experimental results show that this algorithm can effectively obtain fused images with clear target contour and background contour. The fused images also have high contrast and low noise. The results show that it is an effective method of achieving the infrared and visible image fusion.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876