位置:成果数据库 > 期刊 > 期刊详情页
基于K-means聚类算法的复杂网络社团发现新方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116029
  • 相关基金:基金项目:国家“973”重点计划资助项目(2004CB318000);辽宁省教育厅科研资助项目
中文摘要:

提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确定网络理想的社团结构。该算法有效地避免了K-means聚类算法对初始化选值敏感性的问题。通过Zachary Karate Club和College Football Network两个经典模型验证了该算法的可行性。

英文摘要:

This paper proposed a new detecting method based on K-means cluster algorithm. Through the definition of node link based on information centrality which Fortunato proposed and the selection of the clustering center and the clustering of the node according node link, the approach identified the network to k communities, then identified the ideally community structure according modularity. The algorithm could find clustering center better and it is robust to initialization, so the quality of detecting was improved greatly. It tested the algorithm on the two network data named Zachary Karate Club and College Football Network.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049