该文利用Leggett-Williams不动点定理,研究半无穷区间边值问题 (p(t)x′(t))′+Ф(t)f(t,x(t),x′(t))=0,t∈[0,+∞), a1x(0)-β1 lim p(t)x′(t)=a1, α2 lim x(t)+β2 lim p(t)x′(t)=a2, 多个正解的存在性。
In this paper, by using the Leggett-Williams fixed point theorem, the authors discuss the existence of at least three solutions for a class of second order boundary value problems on the half-line as follows (p(t)x′(t))′+Ф(t)f(t,x(t),x′(t))=0,t∈[0,+∞), a1x(0)-β1 lim p(t)x′(t)=a1, α2 lim x(t)+β2 lim p(t)x′(t)=a2.