首先利用Heisenberg群上的Hardy型不等式,通过基本的微积分运算建立了若干不等式,然后建立了次椭圆p-Laplace方程的解在原点附近的增长性估计.最后给出了具有广义有限能量的函数的L^p-估计.
Using an Hardy type inequality on the Heisenberg group, some inequalities 'are derived through elementary calculus. Then growth estimates for solutions of subelliptic p-Laplacian with p 〉 1 at origin are constructed. Finally, L^p estimates of functions having finite energy are constructed.