研究了亚纯函数的唯一性和分担不动点,改进了XUJF等的结果,得到主要的结果:设n,k,m,和l是4个正整数,f(z)和g(z)是两个非常数整函数或两个分别有m和l个极点的亚纯函数(忽略重数).如果n〉max{3k+12,k+m+f+3},(f^n)^(k)和(g^n)^(k)CM分担z,(f')(k)和(g^n)^(k)IM分担0,则f(z)=c1e^cz2,g(z)=c2e^-cn2或f(z)=-tg(z),其中c1,c2,c和t是满足4n^2(c1c2)^nc^2=-1或t^n=1的4个复数.
In the paper, we study the uniqueness and the shared fixed-points of meromorphic functions and improve a result of XU J F,et al. the main result is that: Let n, k, m and l be four positive integers, letf(z) and g(z) be two either nonconstant entire functions or meromorphie functions with m, l poles respectively( ignoring multiplicities). Ifn〉max{3k+12, k+m+l+3t, (f) ^(k) and (g^n)^(k) sharez CM, (fn)^(k) and (g^n)^(k) share 0 IM, then eitherf(z) =c1^e2, g(z) =c2e^-cz2 orf(z) -=tg(z), where c1, c2, c and t are four complex numbers satisfying 4n^2( c1 c2 )nC2 =- 1 or t^n = 1 respectively.