在有弹性的绝缘的材料和压电的材料之间的一个可渗透的接口裂缝基于扩大 Stroh 的形式主义被学习。由强壮的工程要求激发了设计新合成材料,作者执行接口裂缝尖端奇特和裂缝尖端精力版本率的数字分析因为分别地, 35 不一样的双性人材料打哪个被五种有弹性的绝缘的材料构造:环氧基树脂,聚合物,艾尔 2 O 3, 原文如此,并且 Si 3 N 4 和七种实际压电的陶艺:PZT-4, BaTiO 3, PZT-5H, PZT-6B, PZT-7A, P-7,和 PZT 照片 151 分别地。有许多更小的介电常数的有弹性的绝缘的材料与极其小的压电比商业压电的陶艺被当作特殊横着各向同性的压电的材料。现在的调查证明可渗透的接口裂缝尖端附近的单个领域的结构由三奇特组成:并且,它在透不过的接口裂缝与那相当不同。不同的远地装载盒子在可渗透的接口裂缝的近尖端的破裂行为上有重要影响,这能被结束。基于现在的理论处理和数字分析,电场导致了生长很好被解释的快克,它提供在有弹性的绝缘 / 压电的双性人材料从接口裂缝生长导致的失败机制的更好的理解。
A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-TA, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: r^-1/2±iε and r^-1/2, which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials.