与符号的计算,一些块答案被介绍给一(3+1 ) 由从方程的 Hirota 双线性的形式寻找积极二次的功能的维的非线性的进化方程。当其它是自由的时,二次的函数包含六个免费参数,其四个满足保证 analyticity 和解决方案的合理本地化的二个决定因素条件,。由把积极二次的功能与指数的功能相结合,然后,在块答案和条纹 solitons 之间的相互作用答案根据一些条件被介绍。而且,我们扩大这个方法由积极二次的功能和夸张余弦功能联合获得更一般的解决方案。因此,在块答案和一双回声条纹 solitons 之间的相互作用答案被导出,相互作用答案的 asymptotic 性质在一些特定的条件下面被分析。最后,这些解决方案的动态性质被选择参数的值在图显示出。
With symbolic computation, some lump solutions are presented to a (3+1)-dimensional nonlinear evolu- tion equation by searching the positive quadratic function from the Hirota bilinear form of equation. The quadratic function contains six free parameters, four of which satisfy two determinant conditions guaranteeing analyticity and rational localization of the solutions, while the others are free. Then, by combining positive quadratic function with exponential function, the interaction solutions between lump solutions and the stripe solitons are presented on the basis of some conditions. Furthermore, we extend this method to obtain more general solutions by combining of positive quadratic function and hyperbolic cosine function. Thus the interaction solutions between lump solutions and a pair of resonance stripe solitons are derived and asymptotic property of the interaction solutions are analyzed under some specific conditions. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.