采用溶胶-凝胶法,制备具有三明治结构的钛阳极,即在钛基材上先被覆Ti70%-Ru30%(摩尔分数,下同)氧化物底层,然后被覆Ir70%-Ta30%中间层,最后被覆Ti70%-Ru30%氧化物表层。通过XRD、电极电位、极化曲线、循环伏安、强化电解寿命等试验方法研究具有三明治结构的钛阳极的物理性能和电化学性能。结果表明,三明治结构阳极涂层主要组成物相为(Ti,Ru)O2金红石相固溶体、IrO2金红石相和非晶态的氧化钽,三明治结构的钛阳极具有优越的析氯和析氧的电催化活性,在析氯和析氧环境中能更好地保持电位稳定性,在高电流密度和高酸度下,有更强的耐蚀性,是较好的析氯析氧合一的钛阳极。
The titanium anode with sandwich coating structure was prepared by a sol-gel method. The anode was composed of three layers by firstly the oxide based layer coated with Ti70%-Ru30% on the titanium substrate, and then the inter-layer coated with Ir70%-Ta30%, the surface layer coated with Ti70%-Ru30%. The physical and electrochemical properties of the titanium anode with sandwich structure were studied by XRD, electrode potential, polarization curve, cyclic voltammetry and accelerated life tests. The results showed that the anode coating is composed mainly of rutile phases (Ti, Ru)O2, IrO2 and amorphous Ta2O5. The titanium anode has excellent electro-catalysis activities for both chlorine evolution and oxygen evolution. In the electrochemical conditions for chlorine evolution, the anode can keep better potential stabilities, and also shows a strong anticorrosive property for electrolyzing at high current density and in the high acidity. As the result, the titanium anode act as a good anode for both chlorine evolution and oxygen evolution.