位置:成果数据库 > 期刊 > 期刊详情页
非局部联合稀疏近似的超分辨率重建算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子科技大学地表空间信息技术研究所,成都611731, [2]电子科技大学电子工程学院,成都611731, [3]桂林空军学院科研部,桂林541003
  • 相关基金:国家973计划项目(2007CB714406)和国家自然科学基金(40801130)资助课题
中文摘要:

该文结合联合稀疏近似和非局部白相似的概念,提出非局部联合稀疏近似的超分辨率重建方法。该方法将输入图像的跨尺度高、低分辨率图像块统一进行联合稀疏编码,建立它们之间的稀疏关联,并将这种关联作为先验知识来指导图像的超分辨率重建。该文方法保证跨尺度自相似集具有相同的稀疏性模式,能更有效地利用图像的自相似性先验信息,提高算法的自适应性。通过自然图像实验,与其它几种基于学习的超分辨率算法对比,超分辨率效果有较好改善。

英文摘要:

A novel super-resolution reconstruction method based on non-local simultaneous sparse approximation is presented, which combines simultaneous sparse approximation method and non-local self-similarity. The sparse association between high- and low-resolution patches pairs of cross-scale self-similar sets via simultaneous sparse coding is defined, and the association as a priori knowledge is used for super-resolution reconstruction. This method keeps the patches pairs the same sparsity patterns, and makes efficiently use of the self-similar information. The adaptability is enhanced. Several experiments using nature images show that the presented method outperforms other several learning-based super-resolution methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739