目的为实现单侧肢体运动想象与实际运动康复的身体部位及运动模式的一致化,进一步改善康复效果,本文设计了一种基于MI-BCI的上肢在线运动功能康复原型系统。方法该系统主要包括以g.MOBIlab脑电仪为核心的运动想象脑电信号(motor imagery electroencephalogram,MI-EEG)实时采集模块、在线处理模块及机械手臂控制模块等几部分。利用MATLAB和C语言混合编程及多线程技术完成对MI-EEG的实时采集、眼电伪迹去除、特征提取与分类,基于ARM9的S3C2440A微处理器设计机械手臂控制系统,控制模块与PC机间采用基于请求响应模式的通信协议,用手臂伸/屈MI-EEG的分类结果实现对机械手臂伸/屈同运动模式的实时控制。结果对5名受试者进行实际测试,对手臂伸/屈MI-EEG的平均识别率为76.75%,验证了系统的实用性。结论本系统具有良好的自适应性和实时性,为研制出更加自然、可临床应用的上肢运动康复系统奠定了基础。
Objective To achieve the unification of unilateral limb movement imagination and the actual movement rehabilitation,a MI-BCI based online prototype system is designed to improve the rehabilitation performance for upper limb motor function. Methods The system consists of the real-time motor imagery electroencephalogram(MI-EEG) acquisition module based on g.MOBIlab,the online processing module,the mechanical arm and control module,etc. The real-time acquisition,ocular artifact removal,feature extraction and classification of MI-EEG are applicable by hybrid programming with MATLAB and C Language,and as well as multithreading technology. The control module is designed for mechanical arm based on a microprocessor "S3C2440A". The request response communication protocol between control module and personal computer is defined to control the corresponding extension/flexion action of mechanical arm during motor imagery. Results The average recognition rate of this system is 76. 75% with 5 subjects being evaluated. Conclusions This system has excellent adaptability and real-time performance,which lay a solid foundation for development of more natural and advantageous clinical application system for upper limb rehabilitation.