动态 magnetoelectroelastic 行为由塑造的便士导致了的分析在 magnetoelectroelastic 层击碎的这篇论文。裂缝表面受到仅仅光线砍装载的影响。Laplace 和 Hankel 变换技术被采用把这个问题归结为解决一个 Predholm 不可分的方程。动态压力紧张因素为不同的层高度被获得并且数字地计算了。并且相应静态的答案被简单分析给。为在 magnetoelectroelastic 层的裂缝的动态压力紧张因素在完全有弹性的材料有象那的一样的表示,这被看见。并且两个上的层高度的影响动态、静态的压力紧张因素作为 h/a >不足道 2。
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a pennyshaped crack in a magnetoelectroelastic layer. The crack surfaces are subjected to only radial shear impact loading. The Laplace and Hankel transform techniques are employed to reduce the problem to solving a Fredholm integral equation. The dynamic stress intensity factor is obtained and numerically calculated for different layer heights. And the corresponding static solution is given by simple analysis. It is seen that the dynamic stress intensity factor for cracks in a magnetoelectroelastic layer has the same expression as that in a purely elastic material. And the influences of layer height on both the dynamic and static stress intensity factors are insignificant as h/a 〉 2.