记整群环ZG的增广理想△(G)的n次幂为△^n(G).描述了二面体群G=D2tr(t≥2,r为奇数)的n-次增广商群Qn(G)=△n^(G)/△^n+1(G)的结构,并得到Qn(D2tr)≌Z2^(s(n)),其中,如果1≤n≤t,那么s(n)=2n;如果n≥t+1,那么s(n)=2t+1.
The authors present the nth powerΔ~n(G) of the augmentation idealΔ(G) and describe the structure of the augmentation quotient group Q_n(G) =Δ~n(G)/Δ~(n+1)(G) for dihedral group G = D_(2~t_r)(t≥2,r odd).It is also obtained that Q_n(D_(2~t_)r)≌Z_2~((s(n))),where s(n) = 2n for 1≤n≤t,and s(n) = 2t + 1 for n≥t + 1.