位置:成果数据库 > 期刊 > 期刊详情页
近红外光谱波段优化在东北松子蛋白质定量检测中的应用
  • ISSN号:1673-9078
  • 期刊名称:《现代食品科技》
  • 时间:0
  • 分类:O657.33[理学—分析化学;理学—化学]
  • 作者机构:东北林业大学机电工程学院,黑龙江哈尔滨150040
  • 相关基金:国家自然科学基金项目(31270757); 林业局948项目(2011-4-04)
作者: 仇逊超, 曹军
中文摘要:

为了探究一种快速、无损与简便的东北松子品质检测方法,近红外光谱技术被应用到东北松子蛋白质无损检测研究中。利用偏最小二乘法建立带壳松子和去壳松仁的蛋白质定量分析模型,采用求导、多元散射校正、变量标准化校正、矢量归一化预处理方法优化模型,利用反向间隔偏最小二乘法、无信息变量消除法选取特征波段,建立全波段和特征波段下的偏最小二乘蛋白质预测模型。结果表明,带壳松子光谱经矢量归一化预处理方法后构建的模型最优,松仁光谱经变量标准化校正预处理方法后构建的模型最优;波段筛选能够优化模型质量,其中反向间隔偏最小二乘法的筛选结果最优,其带壳松子和松仁蛋白质模型校正集相关系数分别为0.9056和0.9383,验证集均方根误差分别为0.6670和0.5761。由此可知,经过优化后,模型的预测性能得到了提高,为带壳松子和松仁的蛋白质在线检测提供了一定的参考价值。

英文摘要:

Near-infrared(NIR) spectroscopy was performed to develop a fast, nondestructive, and simple method to test the quality of Northeastern pine nuts. Using shelled and deshelled pine nuts, quantitative analysis models of proteins in the nuts were established using partial least squares(PLS) and the models were optimized by derivation, multiplicative scatter correction(MSC), standard normal variate(SNV), and vector normalization pretreatment. Backward interval partial least squares(Bi PLS) and elimination of uninformative variables(UVE) were used to select characteristic bands to establish PLS protein prediction models with full wavelength and characteristic bands. The results showed that the models established after preprocessing with vector normalization and SNV exhibited optimal performance for deshelled and shelled pine nuts, respectively. The models were optimized by band selection and the optimum screening result was presented using Bi PLS. The correlation coefficients(RC) of calibration subset of the protein models for deshelled and shelled pine nuts were 0.9056 and 0.9383, respectively. The root-mean-square error(RMSE) values of the validation subset were 0.6670 and 0.5761, respectively. Therefore, after optimization, the model prediction performance was improved, thus providing a reference point for online testing of proteins in deshelled and shelled pine nuts.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代食品科技》
  • 北大核心期刊(2011版)
  • 主管单位:华南理工大学
  • 主办单位:华南理工大学
  • 主编:李琳
  • 地址:广州市天河区五山路华南理工大学麟鸿楼号508室
  • 邮编:510640
  • 邮箱:xdspkj@vip.sohu.com
  • 电话:020-87112373
  • 国际标准刊号:ISSN:1673-9078
  • 国内统一刊号:ISSN:44-1620/TS
  • 邮发代号:46-349
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘
  • 被引量:20414