讨论下述带参数的三阶m-点边值问题u(t)+f(t,u(t),u′(t))=0,t∈(0,1),u(0)=u′(0)=0,u′(1)-∑m-2i=1aiu′(ξi)=λ,其中ai≥0(i=1,2,…,m-2),0〈ξ1〈ξ2〈…〈ξm-2〈1,∑m-2i=1aiξi〈1,λ≥0为参数。当f满足超线性或次线性条件时,对适当的λ≥0,获得了上述问题单调正解的存在性与不存在性。所用主要工具是Guo-Krasnoselskii不动点定理。
This paper is concerned with the following third-order m-point boundary value problem with a parameter{u′′′(t)+f(t,u(t),u′(t))=0,t∈(0,1),u(0)=u′(0)=0,u′(1)-∑m-2i=1aiu′(ξi)=λ,where ai≥0(i=1,2,…,m-2),0ξ1ξ2…ξm-21,∑m-2i=1aiξi1 and λ≥0 is a parameter.The existence and nonexistence of a monotone positive solution for the above problem are discussed for suitable λ≥0 when f is superlinear or sublinear.The main tool used is the Guo-Krasnoselskii fixed point theorem.