提出一种用多边形网格计算二维变系数问题域积分的新型边界单元法。首先,构造了由任意多边组成的多边形网格形函数,用于几何与物理量的插值;其次,用径向积分法将多边形域积分转换成沿多边形周边的线积分,有效解决了各类非规则多边形网格的单元积分难题;最后,三个有关功能梯度材料与结构的数值算例结果显示本文提出的算法和常规有限元相比误差小于1%,说明本文方法具有很高的精度,且由于其单元积分时无需对积分函数或者积分域进行三角化等额外处理,该方法具有很高的效率。