Pollen analyses of 85 samples from the San-jiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%-60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pol-len transport characteristics, and the overall pollen assem-blage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of palaeoenvironm
Pollen analyses of 85 samples from the Sanjiaocheng section well along the margin of a palaeolake at the end of the Shiyang River, NW China, show that Picea and Sabina dominate the pollen assemblage. Together they reach as high as 40%–60%, with the percentage of Picea varying inversely with that of Sabina. Similar results were obtained from another section in the Shiyang River drainage. Using modern ecological habitat relationship analogues, pollen transport characteristics, and the overall pollen assemblage, we propose that both Picea and Sabina pollen were transported by the river from the mountains at the upper reaches of the Shiyang River, and that the assemblage is more indicative of changes in upland vegetation than of local conditions near the section. This interpretation is supported by pollen data derived from surface samples, water samples, and riverbed samples. Using a moisture indicator (the Picea to Sabina ratio) and calculated pollen concentrations, we identify a series of palaeoenvironmental changes during the early Holocene (10–6.3 14C kaBP).