汞同位素是一个新兴的地球化学示踪手段。过去十多年来,随着质谱技术的飞跃发展,汞同位素地球化学研究取得了引人注目的进展,主要体现在如下两个方面。(1)实验及理论地球化学研究表明,汞生物地球化学循环的一系列过程都能导致显著的汞同位素质量分馏。此外,汞还是自然界少数存在同位素非质量分馏的金属元素之一。汞同位素非质量分馏对识别某些特殊地球化学过程(如光还原作用、挥发作用等)具有重要指示意义。(2)自然样品的汞同位素测试表明,自然界汞同位素组成(δ202Hg和△199Hg)变化可达〉10‰。目前,汞同位素地球化学已被应用于汞污染源示踪、汞生物地球化学过程判别等领域,并有望在不久的将来在汞的大气化学、生物地球化学等领域得到更为广泛的应用。
Mercury isotope is recognized as a new geochemical tracer. In the past decade, with the rapid development of mass spectrometry, mercury isotope geochemistry has made remarkable progress, which can be embodied in the following two aspects: (I) Laboratory studies showed that numerous processes related to Hg biogeochemieal cycling can cause significant mass-dependent fractionation of mercury isotopes, and the recent discovery of mass-independent fractionation of mercury isotopes allows new constraints to identify specific process (e. g. , photochemical reduction) during mercury geochemical cycling; (2) Observation of natural samples showed large variations of mercury isotopic composition (up to 10‰ for both δ202Hg and A199Hg values) on the Earth, and mercury isotopes have been successfully used to track the sources and geochemical pathways of Hg in the environment, and in the future, it is also expected to get more extensive applications in a number of fields, including atmospheric chemistry and biogeochemistry.