位置:成果数据库 > 期刊 > 期刊详情页
基于混沌理论的太阳黑子数平滑月均值预报
  • ISSN号:1000-3290
  • 期刊名称:Acta Physica Sinica
  • 时间:2012
  • 页码:543-549
  • 分类:P182.41[天文地球—天文学]
  • 作者机构:[1]陕西理工学院物理与电信工程学院,汉中723001, [2]云南师范大学物理与电信工程学院,昆明650092
  • 相关基金:国家自然科学基金(批准号:11163007)和云南省自然科学基金重点项目(批准号:2008A011z)资助的课题.
  • 相关项目:Bl Lac天体的多波段观测和辐射机制研究
作者: 唐洁|张雄|
中文摘要:

太阳黑子活动长期预报对航天、通讯、防灾等具有重要的指导意义.针对加权一阶局域法在多步预测时存在累积误差效应,建立了基于相空间重构技术的径向基函数神经网络预测模型.用该模型对第22,23太阳周黑子数平滑月均值进行逐月预报,并与实测值进行比较.结果表明,预报的绝对误差可以控制在15.00以内,平均绝对误差分别为5.47,2.83,相对误差控制在15.00%以内,平均相对误差分别为5.45%,4.60%,验证了该模型在预测太阳黑子数时具有较高的精度.将该预测模型用于第24太阳周黑子数平滑月均值预报,做出了自2009年1月到2019年12月共132个月的黑子数平滑月均值的预报,指出黑子数平滑月均值的最大值为104.77,将出现的时间为2013年1月.

英文摘要:

Long-term prediction of sunspot activity is of great importance for the space activity, communication, disaster prevention and so on. Cumulative error is main shortcoming of weighted one-rank local-region forecasting model for multi-steps prediction of chaotic time series. The radial basis function neural network forecasting model based on phase reconstruction is presented for chaotic time series prediction. The model is applied to the prediction of smoothed monthly mean sunspot numbers for the 22na and 23rd sun cycles, and compared them with the observations. The results indicate that the mean absolute errors are 5.47 and 2.82, 15 to the maximum in absolute errors, and the mean relative errors are 5.45% and 4.60%, 15.00% to the maximum in relative errors. These results show that this prediction method can be successfully used to predict the smoothed monthly mean sunspot numbers. The predicted maximal smoothed monthly mean sunspot number is 104.77 that will appear in January 2013 for 132 months of cycle 24 from January 2009 to December 2019.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876