We theoretically study the coherent transport of a single electron between the ground states of a double coupled quantum dot structure. The coherent transport is externally controlled by applying a few-cycle pulse with an adjustable carrier-envelope phase(CEP). By simulating numerically, it is shown that there exhibits a strong dependence of electron transport on the CEP and on the arrival time of few-cycle pulse. We provide a simple analytical description for this phenomenon by approximating the quantum dot structure as a three-level Λ-type system. These results also illustrate the potential of utilizing excitation in coupled quantum dots as a means of measuring the CEP of few-cycle pulses.
We theoretically study the coherent transport of a single electron between the ground states of a double coupled quantum dot structure. The coherent transport is externally controlled by applying a few-cycle pulse with an adjustable carrier-envelope phase(CEP). By simulating numerically, it is shown that there exhibits a strong dependence of electron transport on the CEP and on the arrival time of few-cycle pulse. We provide a simple analytical description for this phenomenon by approximating the quantum dot structure as a three-level Λ-type system. These results also illustrate the potential of utilizing excitation in coupled quantum dots as a means of measuring the CEP of few-cycle pulses.