Curvelet变换是继小波和脊波变换之后一种新的多尺度图像表示方法,具有高度各向异性特性,非常适合于对图像边缘进行描述。Curvelet变换理论自提出至今的几年里,其理论研究在取得很好发展的同时,实际应用也获得了很大成功。本文从图像融合、去噪、压缩传感及纹理特征提取四个方面介绍了Curvelet变换在医学图像中的应用现状。这对发展Curvelet变换的理论,探讨医学图像处理更有效的方法都具有重要意义。
Curvelet transformation, an extension and latest development of Wavelet and Ridgelet transformation, is a kind of muhiscale, multi-directional and anisotropic transformation, and is very suitable for representing the image edge. Both the fundamental research and practical application of curvelet transformation have progressed greatly, since it was introduced. This paper presents the applications of curvelet transformation on image fusion, denoising, compression sensing and texture feature extraction in medical image processing. This review is purposed useful for developing the curvelet transformation theory and exploring more efficient medical image processing methods.