[目的]对珠江口海岸带沉积物中的氨氧化细菌和古菌的组成进行分析,并进行定量研究。[方法]用构建克隆文库和Q-PCR定量的方法对珠江口沉积物中氨氧化细菌和古菌amoA基因的含量和多样性特征进行研究。[结果]在2个沉积物表层,氨氧化古菌的含量是细菌的9和22倍,揭示氨氧化古菌在珠江口的氨氧化过程中起主导作用;系统发育分析表明大多数古菌和细菌的amoA基因序列与不可培养的源于河口区和污染区域的环境克隆子序列有较高的同源性;细菌amoA序列可分成5个类群(Cluster A、B、C、D和E),均属于Nitrosomonas类群,其中Cluster A是主要类群(72.1%);古菌amoA序列分析表明来自于表层的序列有52.2%属于"水/沉积物"簇,47.8%属于"土壤/沉积物"簇,而沉积物底层厌氧区,检测到的古菌amoA基因93.3%属于"土壤/沉积物"簇,6.7%属于"水/沉积物"簇,且amoA基因数量略高于表层。[结论]该研究有助于了解珠江口区域氮的循环过程,为氮的富营养化处理提供重要的理论依据。
[Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment.[Method] Firstly,the amoA gene library was constructed;then based on that,the content and diversity of amoA genes of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment were detected by using quantitative real-time polymerase chain reaction(Q-PCR).[Result] The results of Q-PCR presented that ammonia-oxidizing archaea(AOA) were more abundant than ammonia-oxidizing bacteria(AOB) in the top of sediment cores,with ratios of AOA to AOB of 22 and 9 at the two sites.It suggested that ammonia-oxidizing archaea may play more important roles than ammonia-oxidizing bacteria in the process of ammonia oxidation in the Pearl River Estuary sediment.The phylogenetic tree based on amoA gene sequences revealed that the amoA sequences of both AOA and AOB shared high similarity with the clones from uncultured environment.In the top sediment layer at site Q7,AOB amoA-like gene sequences were dominated by Nitrosomonas-like sequence types,which could be classified into five groups(clusters A,B,C,D and E).Cluster A accounted for 72.1% of the library.In the top sediment layer,the AOA amoA gene fell into two groups "water column/sediment" cluster(52.2%) and "soil/sediment" cluster(47.8%).But in the bottom sediment layer of Q7,most of the AOA amoA sequences(93.3%) fell into "soil/sediment" cluster,and a little part(6.7%) fell into the "water/sediment" cluster.In addition,the total amount of amoA genes in the bottom sediment was higher than that in top sediment.[Conclusion] This study helps to realize the cycle of nitrogen in Pearl River Estuary Region,and thus to provide theoretical support for the treatment of nitrogen eutrophication.