本文研究非线性分数阶积分边值问题D0+ a u(t)=f9t,u(t)), 1〈a≤2,t∈[0,T],T〉0, I 0+ 2-a u(t)|t=0=0, D0+ a-2 u(T)=∑i=1 m ai I0+ a-2 u(ξi)解的存在性,其中D0+ a, I0+ a分别是标准的Riemann—Liouville型分数阶导数和积分,利用不动点定理得到该边值问题解的存在性和唯一性结果,并举例验证了结果的合理性.
In this paper, we study the existence of solutions of the following nonlinear fractional integro-differential equations boundary value problem D0+ a u(t)=f9t,u(t)), 1〈a≤2,t∈[0,T],T〉0, I 0+ 2-a u(t)|t=0=0, D0+ a-2 u(T)=∑i=1 m ai I0+ a-2 u(ξi),where D0+ a and I0+ a are the standard Riemann-Liouville fractional derivative and fractional integral respectively. Some existence and uniqueness results are obtained by applying some standard fixed point principles. Several examples are given to illustrate the results.