位置:成果数据库 > 期刊 > 期刊详情页
融合邻域模型与隐语义模型的推荐算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南大学信息科学与工程学院,长沙410082
  • 相关基金:国家科技支撑计划项目(No.2012BAF12B20);国家自然科学基金(No.60901080)。
中文摘要:

作为目前构建推荐系统最成功的方法之一,协同过滤算法(CF)是利用已知的一组用户喜好数据来预测用户对其他物品的喜好从而做出个性化推荐的。两种比较成功的协同过滤算法能够直接刻画用户和物品因子的隐语义模型,以及分析物品或者用户之间相似度的邻域模型。提出了一种针对这两种模型的改进方法,使得隐语义模型和邻域模型能够有效结合,从而构建出一个更精确的融合模型。在融合用户的显性反馈与隐性反馈信息对模型进行扩展后,又使得精确度进一步提升。在Netflix数据集上进行测试,实验结果表明,该融合算法在Netflix数据集上的性能优于其他算法。

英文摘要:

As one of the most successful approaches to building recommender systems, Collaborative Filtering(CF)uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. The two successful approaches to CF are latent factor models, which directly profile both users and products, and neighborhood models, which analyze similarities between products or users. This paper introduces some innovations to both approaches. The factor and neighborhood models can now be smoothly merged, thereby building a more accurate combined model. Further accuracy improvements are achieved by extending the models to exploit both explicit and implicit feedback by the users. The methods are tested on the Netflix data, and the results are better than those previously published on that dataset.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887