Batista在M^2(c)×R中的具有常平均曲率的曲面上引入了一个特殊的(1,1)型张量S.之后,Fetcu和Rosebberg将张量S推广到M^n(c)×R中的具有平行平均曲率向量的曲面上.该文将张量S推广到了伪黎曼乘积空间中的曲面上,并研究了S的Pinching问题,得到了若干Pinching常数.特别地,对外围空间是黎曼乘积空间的情况,得到的Pinching常数优于Baltista得到的相应的Pinching常数.
Batista introduced a special (1, 1) tensor S on a CMC immersed surface ∑^2 in M^2(c) ×R. Later on, Fetcu and Rosebberg extended (1, 1) tensor S to PMC surface ∑^2 → M^n-1(c) ×R. In the present paper, the authors consider a more general tensor S on PMC immersed surface E2 in Lorentzian product spaces (M^n-1 (c) × R, g-1) and Riemmannian product spaces (M^n-1 (c) × R,g+1). The authors compute the Simons type equations of |S|2, and characterize CMC surfaces in (M2(c) ×R,gε). For case ε = +1, we obtain several pinching constants greater than that given by Batista.